skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Daehyeok"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 28, 2026
  2. Trends indicate that emerging SmartNICs, either from different vendors or generations from the same vendor, exhibit substantial differences in hardware parallelism and memory interconnects. These variations make porting programs across NICs highly complex and time-consuming, requiring programmers to significantly refactor code for performance based on each target NIC’s hardware characteristics. We argue that an ideal SmartNIC compilation framework should allow developers to write target-independent programs, with the compiler automatically managing cross-NIC porting and performance optimization. We present such a framework, Alkali, that achieves this by (1) proposing a new intermediate representation for building flexible compiler infrastructure for multiple NIC targets and (2) developing a new iterative parallelism optimization algorithm that automatically ports and parallelizes the input programs based on the target NIC’s hardware characteristics. Experiments across a wide range of NIC applications demonstrate that Alkali enables developers to easily write portable, high-performance NIC programs. Our compiler optimization passes can automatically port these programs and make them run efficiently across all targets, achieving performance within 9.8% of hand-tuned expert implementations. 
    more » « less
    Free, publicly-accessible full text available April 28, 2026
  3. Network operators need to run diverse measurement tasks on programmable switches to support management decisions (e.g., traffic engineering or anomaly detection). While prior work has shown the viability of running a single sketch instance, they largely ignore the problem of running an ensemble of sketch instances for a collection of measurement tasks. As such, existing efforts fall short of efficiently supporting a general ensemble of sketch instances. In this work, we present the design and implementation of Sketchovsky, a novel cross-sketch optimization and composition framework. We identify five new cross-sketch optimization building blocks to reduce critical switch hardware resources. We design efficient heuristics to select and apply these building blocks for arbitrary ensembles. To simplify developer effort, Sketchovsky automatically generates the composed code to be input to the hardware compiler. Our evaluation shows that Sketchovsky makes ensembles with up to 18 sketch instances become feasible and can reduce up to 45% of the critical hardware resources. 
    more » « less
  4. Sketching algorithms or sketches enable accurate network measurement results with low resource footprints. While emerging programmable switches are an attractive target to get these benefits, current implementations of sketches are either inefficient and/or infeasible on hardware. Our contributions in the paper are: (1) systematically analyzing the resource bottlenecks of existing sketch implementations in hardware; (2) identifying practical and correct-by-construction optimization techniques to tackle the identified bottlenecks; and (3) designing an easy-to-use library called SketchLib to help developers efficiently implement their sketch algorithms in switch hardware to benefit from these resource optimizations. Our evaluation on state-of-the-art sketches demonstrates that SketchLib reduces the hardware resource footprint up to 96% without impacting fidelity. 
    more » « less
  5. Sketching algorithms or sketches enable accurate network measurement results with low resource footprints. While emerging programmable switches are an attractive target to get these benefits, current implementations of sketches are either inefficient and/or infeasible on hardware. Our contributions in the paper are: (1) systematically analyzing the resource bottlenecks of existing sketch implementations in hardware; (2) identifying practical and correct-by-construction optimization techniques to tackle the identified bottlenecks; and (3) designing an easy-to-use library called SketchLib to help developers efficiently implement their sketch algorithms in switch hardware to benefit from these resource optimizations. Our evaluation on state-of-the-art sketches demonstrates that SketchLib reduces the hardware resource footprint up to 96% without impacting fidelity. 
    more » « less
  6. Sketching algorithms or sketches enable accurate network measurement results with low resource footprints. While emerging programmable switches are an attractive target to get these benefits, current implementations of sketches are either inefficient and/or infeasible on hardware. Our contributions in the paper are: (1) systematically analyzing the resource bottlenecks of existing sketch implementations in hardware; (2) identifying practical and correct-by-construction optimization techniques to tackle the identified bottlenecks; and (3) designing an easy-to-use library called SketchLib to help developers efficiently implement their sketch algorithms in switch hardware to benefit from these resource optimizations. Our evaluation on state-of-the-art sketches demonstrates that SketchLib reduces the hardware resource footprint up to 96% without impacting fidelity. 
    more » « less