skip to main content


Search for: All records

Creators/Authors contains: "Kim, Daehyeok"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 2, 2024
  2. Network operators need to run diverse measurement tasks on programmable switches to support management decisions (e.g., traffic engineering or anomaly detection). While prior work has shown the viability of running a single sketch instance, they largely ignore the problem of running an ensemble of sketch instances for a collection of measurement tasks. As such, existing efforts fall short of efficiently supporting a general ensemble of sketch instances. In this work, we present the design and implementation of Sketchovsky, a novel cross-sketch optimization and composition framework. We identify five new cross-sketch optimization building blocks to reduce critical switch hardware resources. We design efficient heuristics to select and apply these building blocks for arbitrary ensembles. To simplify developer effort, Sketchovsky automatically generates the composed code to be input to the hardware compiler. Our evaluation shows that Sketchovsky makes ensembles with up to 18 sketch instances become feasible and can reduce up to 45% of the critical hardware resources. 
    more » « less
  3. Sketching algorithms or sketches enable accurate network measurement results with low resource footprints. While emerging programmable switches are an attractive target to get these benefits, current implementations of sketches are either inefficient and/or infeasible on hardware. Our contributions in the paper are: (1) systematically analyzing the resource bottlenecks of existing sketch implementations in hardware; (2) identifying practical and correct-by-construction optimization techniques to tackle the identified bottlenecks; and (3) designing an easy-to-use library called SketchLib to help developers efficiently implement their sketch algorithms in switch hardware to benefit from these resource optimizations. Our evaluation on state-of-the-art sketches demonstrates that SketchLib reduces the hardware resource footprint up to 96% without impacting fidelity. 
    more » « less
  4. Sketching algorithms or sketches enable accurate network measurement results with low resource footprints. While emerging programmable switches are an attractive target to get these benefits, current implementations of sketches are either inefficient and/or infeasible on hardware. Our contributions in the paper are: (1) systematically analyzing the resource bottlenecks of existing sketch implementations in hardware; (2) identifying practical and correct-by-construction optimization techniques to tackle the identified bottlenecks; and (3) designing an easy-to-use library called SketchLib to help developers efficiently implement their sketch algorithms in switch hardware to benefit from these resource optimizations. Our evaluation on state-of-the-art sketches demonstrates that SketchLib reduces the hardware resource footprint up to 96% without impacting fidelity. 
    more » « less
  5. Sketching algorithms or sketches enable accurate network measurement results with low resource footprints. While emerging programmable switches are an attractive target to get these benefits, current implementations of sketches are either inefficient and/or infeasible on hardware. Our contributions in the paper are: (1) systematically analyzing the resource bottlenecks of existing sketch implementations in hardware; (2) identifying practical and correct-by-construction optimization techniques to tackle the identified bottlenecks; and (3) designing an easy-to-use library called SketchLib to help developers efficiently implement their sketch algorithms in switch hardware to benefit from these resource optimizations. Our evaluation on state-of-the-art sketches demonstrates that SketchLib reduces the hardware resource footprint up to 96% without impacting fidelity. 
    more » « less
  6. Sketching algorithms or sketches are attractive as telemetry capabilities on programmable hardware switches since they offer rigorous accuracy guarantees and use compact data structures. However, we find that in practice, their actual implementations can have a significant (up to 94×) accuracy drop compared to theoretical expectations. We find that the delays incurred by pulling and resetting the data plane state induce accuracy degradation. We design and implement solutions to reduce the delays and show that our solutions can help eliminate almost all the inaccuracy of existing sketch workflows. 
    more » « less
  7. null (Ed.)
    Many recent efforts have demonstrated the performance benefits of running datacenter functions (e.g., NATs, load balancers, monitoring) on programmable switches. However, a key missing piece remains: fault tolerance. This is especially critical as the network is no longer stateless and pure endpoint recovery does not suffice. In this paper, we design and implement RedPlane, a fault-tolerant state store for stateful in-switch applications. This provides in-switch applications consistent access to their state, even if the switch they run on fails or traffic is rerouted to an alternative switch. We address key challenges in devising a practical, provably correct replication protocol and implementing it in the switch data plane. Our evaluations show that RedPlane incurs negligible overhead and enables end-to-end applications to rapidly recover from switch failures. 
    more » « less
  8. Programmable switches have been touted as an attractive alternative for deploying network functions (NFs) such as network address translators (NATs), load balancers, and firewalls. However, their limited memory capacity has been a major stumbling block that has stymied their adoption for supporting state-intensive NFs such as cloud-scale NATs and load balancers that maintain millions of flow-table entries. In this paper, we explore a new approach that leverages DRAM on servers available in typical NFV clusters. Our new system architecture, called TEA (Table Extension Architecture), provides a virtual table abstraction that allows NFs on programmable switches to look up large virtual tables built on external DRAM. Our approach enables switch ASICs to access external DRAM purely in the data plane without involving CPUs on servers. We address key design and implementation challenges in realizing this idea. We demonstrate its feasibility and practicality with our implementation on a Tofino-based programmable switch. Our evaluation shows that NFs built with TEA can look up table entries on external DRAM with low and predictable latency (1.8-2.2 μs) and the lookup throughput can be linearly scaled with additional servers (138 million lookups per seconds with 8 servers). 
    more » « less